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Abstract. In this paper a global measure of the re-identification risk in microdata files
is analyzed. A penalized maximum likelihood approach is described. Mainly the problem
of smoothing two-way contingency tables will be addressed; further possible developments
are indicated. The methodology was applied to data stemming from the Italian 2001
Census and the Labour Force survey.

1 Introduction

To face the increasing demand from users, the National Statistical Institutes (NSI)
disseminate more often microdata files. Such dissemination should be constrained
to the confidentiality pledge under which a statistical agency collects survey data.
To protect the confidentiality of respondents, a statistical disclosure control (SDC)
methodology is generally applied. This methodology may be divided in two main
parts. In a first stage, with respect to an adopted disclosure scenario, the risk of
disclosure of each unit is assessed/estimated. Then, a masking method is applied
to guarantee that no confidential information about respondents could be retrieved
from the disseminated microdata file. This paper addresses only the first problem:
the disclosure risk assessment. Moreover, the risk of disclosure is here defined as the
risk of re-identification.

After the removal of direct identifiers, e.g. name and address, other indirect iden-
tifiers, called key variables, could still allow the re-identification of a unit. Usually,
most of the key variables registered in social microdata files are categorical. Partic-
ular values taken by variables like place of residence, gender, age, citizenship, and
marital status could correspond to a unique person in the population. Therefore,
the risk of re-identification for such data is estimated by means of rareness concepts,
see, for example, [2] and [4]. In this work it is assumed that the key variables are
all categorical.

This paper is divided in three parts. In section 2 the framework used for the re-
identification risk estimation and its link to the log-linear models is introduced. In
section 3 a smoothing strategy, the penalised likelihood approach, is discussed as a
technique to estimate a disclosure risk measure in contingency tables. The penalised
likelihood methodology was applied to simulated and real data. In section 4, several
results are illustrated. In section 5 conclusions are drawn and some further possible
developments are indicated.
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2 Measures of Disclosure Risk

Before microdata file dissemination, the NSI generally make assumptions on the
tools an intruder might use to breach the confidentiality of respondents. It is usu-
ally assumed that the intruder may access some external database containing direct
identifiers. It is further assumed that the intruder would use the shared variables
as comparison variables in a matching experiment. There are many implicit as-
sumptions in this disclosure scenario. Many facets of this scenario were previously
discussed in literature, see, for example, [7] and [10]. The NSIs commonly quantify
the disclosure risk by means of the re-identification risk, that is, the probability of
a correct match, see [10].

As the units sharing the same values for all the categorical variables have the
same re-identification risk, see [4] and [7], the key variables are cross-classified; a
contingency table with K cells is then derived. Obviously, the re-identification risk
depends on both the population and sample frequencies of these cells. Let Fk denote
the population frequency and let fk denote the sample frequency of the k-th cell,
k = 1, . . . , K. The usage of only sample frequencies is not sufficient because the risk
could be overestimated. The global measure of risk discussed in this paper is the
number of sample uniques that are also population uniques. Following the approach
in [10], this risk measure may be written as:

τ1 =
K∑

k=1

I(Fk = 1, fk = 1)

τ1 cannot be directly computed because it depends on the unknown popula-
tion frequencies Fk. Some modelling assumptions are needed in order to derive an
estimable expression of the global risk measure. It is generally assumed that the pop-
ulation frequencies are independently Poisson distributed with means λk. In each
cell, a Bernoulli sampling scheme is assumed, with selection probability equal to
πk. It follows that the sample frequencies fk are also independent following Poisson
distributions, see [10].

Then an estimation of the global risk measure τ1 may be expressed as in (1).

τ̂1 =
K∑

k=1

exp(−µk(1− πk)/πk), µk = πkλk (1)

τ̂1 depends on both the sampling fractions, πk and the expected cells frequencies.
It should be observed that the summation should be done on the sample uniques
only. Moreover, for simplicity, it is assumed that the sampling fractions are equal
across the cells of the contingency table, i.e. πk = π, k = 1, . . . , K.

To estimate τ1 the relationships between the expected cell frequencies are gener-
ally modelled by means of a log-linear model including the desired main effects and
interactions, see equation (2).

log(µk) = x
′
kβ (2)

The estimates are then computed by maximizing the relevant part of the log-
likelihood function L(β) =

∑
(fklog(µk) − µk). Iterative algorithms like iterative

proportional fitting (IPF) or Newton-Raphson may be used to maximise the likeli-
hood L(β).

2



Table 1: Example of a 2 x 2 table.

a b
c x

3 Smoothing Contingency Tables

For large sparse tables, the likelihood could get maximized on the boundary of the
parameter space and too many cells estimates might be zero. Two possible solutions
are the table redesign or the addition of a flattening constant. Both solutions have
their drawbacks either because they do not solve the given dissemination problem or
because the sample size is artificially increased. In [1] and [3] more details on these
methods are given.

A valid alternative could be the usage of parsimonious models. Anyway, in the
risk estimation framework, see [8], it was observed that when a simple (indepen-
dence) log-linear model is used, the estimation of µk would be based on information
from all the cells having in common even a single characteristic.

3.1 Local Neighbourhoods

In [8], it was proposed to find a compromise between the model complexity and
the quantity of information used: complicate a little bit the model, but use only
the information from the neighbouring cells. Of course, the neighbourhoods may be
defined only for ordinal variables. Consequently, it was supposed that a distance
between cells may be defined, namely d(k

′
, k).

This approach is based on the assumption that in a certain neighbourhood, log(µ)
may be approximated by a polynomial, i.e. log(µ) =

[
β0 + . . . + βtd(k

′
, k)t

]
. Then,

it was proposed to maximize, for each cell, the local likelihood function:

LL(β) =
∑

k
′∈Nk

[
fk′

[
β0 + . . . + βtd(k

′
, k)t

]
− exp

(
β0 + . . . + βtd(k

′
, k)t

)]
(3)

where Nk denotes the a-priori selected neighborhood of the k-th cell.
In [8] several choices of Nk and d are presented, taking into account their possible

multi-dimensionality, too. Different aspects of the local neighborhood approach were
discussed in [6].

3.2 Smoothness and Independence

The main idea in the previous proposal is that the sample uniques with small values
neighbouring cells are more likely population uniques. This idea could be further
generalized. If smoothness is assumed, the neighbouring cells should have similar
values.

Let’s see what smoothness means in practice. Consider a simple 2 by 2 table,
see table 1. If a, b and c have similar values, small or large, it doesn’t matter, and
if smoothness is assumed, the fourth value, x, should take more or less the same
value. This means that the cross-ratio θ = ax

bc
is approximately 1. Values of θ close

3



to 1 represent the independence of the two categorical variables, while values of θ
farther from 1 represent stronger levels of association, i.e., no independence.

In the SDC framework, the cross-ratio θ could be a possible way to quantify the
smoothness.

To distinguish between the sample uniques that are also population uniques and
those who aren’t, smoothness in the contingency table should be assumed. The
maximisation of the log-likelihood function L(β) could be constrained to a smooth
solution. As usual in optimisation problems, to take into account a constraint, one
could penalise for missed smoothness or, equivalently, one could penalise for the
missed independence. Maximizing the penalized likelihood given in equation (4)
would guarantee a smooth solution.

PL(β) = L(β)− A

I−1∑
i=1

J−1∑
j=1

[
log

(
µi,jµi+1,j+1

µi,j+1µi+1,j

)]2

(4)

where I is the number of rows and J is the number of columns. A is a penalty con-
stant whose values might be chosen according to some statistical criteria discussed
in [9], for example. The function PL penalizes for missed local independence in the
reduced 2x2 tables since PL takes smaller values when the cross-ratios are much
greater (smaller) than 1.

3.3 Properties of the Penalized Likelihood Function

There are several theoretical advantages of this penalized likelihood approach.
First the existence, uniqueness and consistency of the estimators were proved

under general conditions, see [9].
Second, the number of parameters to be estimated is greatly reduced with respect

to the methodology proposed in [8]. This means that the number of degrees of
freedom is kept under control.

Third, the penalized likelihood could be extended to multi-dimensional tables.
It is sufficient to use an expression of independence in multi-dimensional tables. For
example, in a 3-dimensional table, the penalty could be related to

log
(

µijmµi+1jmµij+1mµijm+1

µi+1j+1m+1µi+1j+1mµi+1jm+1µij+1m+1

)
. In section 4 some results of an application of

this penalty to 3-way tables will be given.
The penalized likelihood approach is an estimation method; in principle, it could

be integrated with whatever model. For example, the penalized likelihood could also
be integrated with the log-rate models. To obtain unbiased parameter estimates and
non-misleading standard errors, the log-rate models introduced in [5] use an offset
variable depending on weights, see equation (5). The advantages of using this model
in the SDC framework were discussed in [6].

log(µk) = log(zk) + x
′
kβ (5)

where zk = 1/wk is the inverse of the average cell weight wk = fw
k /fk.

An interesting feature of (5) is the natural way to deal with the structural zeros.
The model may be rewritten in a multiplicative form

µk = zkexp(x
′
kβ)
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and the zk may be set equal to zero for all the structural zero cells. This formulation
is important especially for the tables containing a large number of structural zeros,
as the ones derived from the social surveys. An application of this methodology will
be described in section 4.

The penalised likelihood approach could be extended to non-ordinal key vari-
ables. The large (full) contingency table could be divided in many 2-way reduced
tables. For these reduced tables, the independence could be simply expressed by
the cross-ratio. Then the penalty should be expressed in terms of independence in
the reduced tables. It should be observed that it is not necessary to assume the
smoothness, hence independence, for all the reduced 2-way tables. Only for a sub-
set of such reduced tables the smoothness property might be assumed. This latter
extension will be subject to further investigation.

4 Case studies

The penalised likelihood approach was applied to two different datasets. First
the Italian 2001 census data was used to generate samples from which 2 and 3-
dimensional contingency tables were computed. Secondly, data stemming from the
Italian 2001 Labour Force Survey was used to perform some further tests on 2-
dimensional tables. The algorithm was implemented in an iterative manner. The
penalty constant A was always set equal to 10. The penalized likelihood approach
was integrated in the parameter estimation of the independence log-rate models.
The structural zeros were taken into account. In these applications, the structural
zeros were defined by those cells having a zero value in the contingency table derived
from the census data.

4.1 Census data

From the Italian 2001 census data, the variables Province, Gender, Age (14 cat-
egories) and Education (16 categories) were selected. Variables Gender and Age
were used as stratification variables. For each province, a random municipality was
selected among those having more than 500 inhabitants. For different sampling
fractions varying from 0.01 to 0.9, a stratified simple random sample was selected.
To preserve the population totals by Gender and Age, the weights were computed
using a calibration estimator. The penalized likelihood method was firstly applied
to the 2-way contingency tables defined by Age and Education. For a selection of
provinces, the results are illustrated in figure 1. It may be observed that the esti-
mated τ1 is much closer to the real τ1 than to the number of sample uniques. For
the other sampling fractions, the same qualitative conclusion holds, except that the
distance between the black, red and blue lines decreases as the sampling fraction
increases. For the 3-dimensional tests on census data, the same settings were used.
Gender, Age (14 categories) and Education (16 categories) were the categorical key
variables. 200 samples were generated for each municipality and for each sampling
fraction. In table 2, the results obtained in several provinces are shown. Indeed, for
each province and for each sampling fraction, the percentage of times the absolute
difference |τ̂1 − τ1| is greater than 3 is shown in the third column. Moreover, the
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Table 2: Simulated tables from the Italian 2001 census. Percentage of times when
the indicated criteria is satisfied.

Province π |τ̂1 − τ1| > 3
∣∣∣ τ̂1−τ1

τ1

∣∣∣ > 0.5 min τ1 τ̄1 max τ1

TRENTO 0.05 8 62 0 2.4 6
TRENTO 0.10 4 12 1 4.15 7
TRENTO 0.30 16 0 6 11.93 19
TRENTO 0.50 49 0 11 20.51 27
TRENTO 0.70 65 0 22 28.84 35
TRENTO 0.90 28 0 32 37.19 41
GENOVA 0.01 0 79 0 0.73 3
GENOVA 0.05 20 62 0 2.50 6
GENOVA 0.10 28 34 0 5.72 10
GENOVA 0.50 77 0 17 29.04 38
FIRENZE 0.01 0 100 0 0.54 3
FIRENZE 0.05 8 39 1 3.48 9
FIRENZE 0.10 12 16 1 6.61 13
FIRENZE 0.50 78 0 23 31.62 43
PALERMO 0.01 1 100 0 0.70 4
PALERMO 0.05 10 27 1 3.70 10
PALERMO 0.10 26 9 3 7.45 16
PALERMO 0.50 98 0 23 36.23 47
TORINO 0.01 2 100 0 0.63 4
TORINO 0.05 2 26 0 3.19 7
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Figure 1: Results obtained on samples of census data. The black lines represent
the number of sample uniques, the red lines represent the number of sample and
population uniques (τ1); the blue lines represent the estimated number of sample
uniques that are also population uniques (τ̂1); different symbols represent different
sampling fractions.

percentage of times the absolute relative error
∣∣∣ τ̂1−τ1

τ1

∣∣∣ is greater than 0.5 is indicated

in the fourth column. For brevity, only a selection of provinces and sampling frac-
tions is shown. For the π = 0.01, the 100% values in the fourth columns are due to
the extremely low values of the number of generated sample and population uniques
(τ1). The minimum, mean and maximum number of generated sample and popula-
tion uniques are also given in table 2. The high percentages in the third column are
associated to higher values of τ1, so the relative error is quite low.

4.2 Labour Force Survey

A second experiment was conducted using the Labour Force Survey 2001 data. For
this survey a two-stage stratified sampling was used and the applied stratification
technique involved also the dimension of municipalities, a variable that could be
hardly seen as a key variable in practical disclosure scenarios. For each province,
the contingency tables were analyzed for each Occupation (10 categories) combi-
nation. Age (120 categories) and Education (8 categories) were considered as key
variables. As remarked in [4], [6] or [11], this is probably the most complicated
situation, when a stratification (or calibration) variable is not included among the
key variables. In table 3, a selection of results is presented. Only some Occupation
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Table 3: Labour Force Survey. τ1 estimation by province and occupation domains.
SU = number of sample uniques, SPU = number of sample uniques that are pop-
ulation uniques, NbIter = number of iterations used in the implementation of the
penalized likelihood estimation method, Log = τ1 estimation when the classical in-
dependence log-linear model is used.

Province Occupation SU SPU NbIter1 NbIter5 NbIter10 Log
TORINO 1 49 1 3.39 2.92 2.83 0.00
TORINO 2 88 7 13.42 12.98 9.88 0.00
TORINO 3 37 3 1.35 1.33 1.23 0.01
AOSTA 1 44 2 2.35 2.35 2.35 2.17
AOSTA 2 20 2 4.72 4.48 2.71 0.01
AOSTA 3 31 4 4.39 3.78 3.27 1.50
AOSTA 4 12 1 0.00 0.01 0.13 0.00
AOSTA 5 74 3 4.50 4.34 3.91 2.91
TRENTO 1 18 2 1.00 0.87 1.43 0.00
TRENTO 2 56 1 1.00 1.01 1.01 1.47
TRENTO 3 9 1 0.05 0.06 0.06 0.00
VENEZIA 1 16 2 0.00 0.18 0.77 0.00
VENEZIA 2 9 1 0.00 0.00 0.00 0.00
VENEZIA 3 65 9 11.49 11.17 7.56 0.00
TRIESTE 1 17 3 0.00 0.01 0.02 0.01
TRIESTE 2 56 3 3.00 2.77 2.70 0.01
TRIESTE 3 7 2 0.01 0.03 0.00 0.00
TRIESTE 4 7 1 0.00 0.16 0.15 0.00
BOLOGNA 1 16 2 0.00 0.08 0.82 0.00
BOLOGNA 2 68 3 6.44 4.39 6.16 0.00
ANCONA 1 22 1 0.63 1.32 1.38 0.00
ANCONA 2 55 5 0.22 0.18 4.06 0.28
ANCONA 3 9 2 0.00 0.00 0.03 0.00
CAMPOBASSO 2 48 6 3.64 3.06 2.78 0.22
CAMPOBASSO 3 5 1 0.00 0.08 0.17 0.00
CAMPOBASSO 4 56 3 0.19 0.13 4.26 0.08
CATANZARO 2 74 2 3.54 3.16 2.96 0.01
CAGLIARI 3 17 1 1.27 0.49 0.22 0.00
FIRENZE 1 83 5 3.26 3.48 3.68 0.19
PALERMO 2 58 4 7.15 6.96 6.72 0.14
PALERMO 4 50 2 2.03 1.59 1.32 0.11
NAPOLI 1 64 4 0.00 0.00 2.31 0.06
NAPOLI 2 78 4 5.04 4.84 3.78 0.08
GENOVA 1 55 1 0.90 0.91 0.92 0.01
GENOVA 2 39 2 3.38 2.65 2.19 0.01
GENOVA 3 76 6 6.57 6.36 6.12 0.49
PERUGIA 2 64 1 1.18 1.18 1.18 0.14
PERUGIA 3 42 1 1.46 1.44 1.38 1.46
ROMA 2 66 5 7.73 6.86 6.84 0.02
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categories having at least one sample and population unique are presented. Since
the penalized likelihood approach was implemented in an iterative manner, the effect
of the number of iterations (NbIter) was assessed. In future testing, the algorithm
will be implemented using a deviation criteria. From table 3, it may be observed
that the simple independence log-linear model might not be sufficient to estimate
τ1. As expected, τ̂1 generally approaches τ1 as the number of iterations increases.
When the difference between the number of sample uniques (SU) and the number
of sample and population uniques (SPU) increases, the latter statement might not
hold, especially when the number of SPU is very low. It should be also observed
that a greater number of sample uniques is related to the table sparsity.

5 Conclusions

In the SDC framework, table smoothness is particularly important since the estima-
tion of any disclosure risk measure might be performed by borrowing information
from the neighboring cells. A penalized likelihood approach was proposed to deal
with the smoothness characteristic of the tables. The penalty function was expressed
in terms of independence constraints. The methodology was applied to both simu-
lated and real datasets. In all these tests, the estimated risk value was much closer
to the real risk value than to the number of sample uniques. Depending on the
sampling fractions, the proposed approach to estimate τ1 proved to be a reliable
estimation method.

Since the sparsity of the contingency tables is still a problematic issue, other
smoothness/independence measures will be investigated. Especially for multi-dimensional
tables, usage of more suitable independence measures could improve the estimation
of the global risk measure. Moreover, the estimation of other disclosure risk measures
will be taken into account
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